Laboratoire de Météorologie Dynamique (LMD): References
[1]Sadourny, R., and K. Laval, 1984: January and July performance of the LMD general circulation model. In New Perspectives in Climate Modeling, A.L. Berger and C. Nicolis (eds.), Elsevier Press, Amsterdam, 173-197.
[2]Laval, K., R. Sadourny, and Y. Serafini, 1981: Land surface processes in a simplified general circulation model. Geophys. Astrophys. Fluid Dynamics, 17, 129-150.
[3]Le Treut, H., and Z.-X. Li, 1991: Sensitivity of an atmospheric general circulation model to prescribed SST changes: feedback effects associated with the simulation of cloud optical properties. Clim. Dynam., 5, 175-187.
[4]Butel, 1991: Manuel de référence du M.C.G.A., Versions M205/NMS206, LMD Note 155 version 1.0, Laboratoire de Météorologie Dynamique, Paris, France, 32 pp.
[5]Arakawa, A., and V.R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. In Methods in Computational Physics, 17, J. Chang (ed.), Academic Press, New York, 173-265.
[6]Arakawa, A., and Y. Mintz, 1974: The UCLA general circulation model. Notes from a Workshop on Atmospheric Modeling, 25 March-4 April 1974, Dept. of Meteorology, University of California at Los Angeles, 404 pp.
[7]Sadourny, R., 1975a: The dynamics of finite difference models of the shallow water equations. J. Atmos. Sci., 32, 680-689.
[8]Sadourny, R., 1975b: Compressible model flows on the sphere. J. Atmos. Sci., 32, 2103-2110.
[9]Sadourny, R., 1980: Conservation laws, turbulence, and numerical modelling of large-scale flow. 1979 ECMWF Seminar, European Centre for Medium-Range Weather Forecasts, Reading, England, 167-195.
[10]Michaud, R., 1987: Sensibilite de previsions meteorologiques a longue echeance aux anomalies de temperature superficielle des oceans. These d'Etat, Universite Paris.
[11]Smagorinsky, J., S. Manabe, and J.L. Holloway, Jr., 1965: Results from a nine-level general circulation model of the atmosphere. Mon. Wea. Rev., 93, 727-768.
[12]Deardorff, J.W., 1966: The counter-gradient heat flux in the lower atmosphere and in the laboratory. J. Atmos. Sci., 23, 503-506.
[13]Boer, G.J., N.A. McFarlane, R. Laprise, J.D. Henderson, and J.-P Blanchet, 1984: The Canadian Climate Centre spectral atmospheric general circulation model. Atmos.-Ocean, 22, 397-429.
[14]Royer, J.-F., D. Cariolle, and J.P. Rocafort, 1988: Influence of vertical resolution and ozone distribution on the systematic errors of the French spectral GCM. In Proceedings of the WMO Workshop on Systematic Errors in Models of the Atmosphere, Toronto. [Available from the World Meteorological Organization, Geneva.]
[15]Fouquart, Y., and B. Bonnel, 1980: Computation of solar heating of the Earth's atmosphere: A new parameterization. Beitr. Phys. Atmos., 53, 35-62.
[16]Joseph, J.H., W.J. Wiscombe, and J.A. Weinman, 1976: The delta-Eddington approximation for radiative flux transfer. J. Atmos. Sci., 33, 2452-2459.
[17]Rothman, L.S., 1981: AFGL atmospheric absorption line parameters compilation: 1980 version. Appl. Opt., 20, 791-795.
[18]Stephens, G.L., 1978: Radiation profiles in extended water clouds. II: Parameterization schemes. J. Atmos. Sci., 35, 2123-2132.
[19]Morcrette, J.-J., 1990: Impact of changes to the radiation transfer parameterizations plus cloud optical properties in the ECMWF model. Mon. Wea. Rev., 118, 847-873.
[20]Morcrette, J.-J., 1991: Radiation and cloud radiative properties in the ECMWF operational weather forecast model. J. Geophys. Res., 96, 9121-9132.
[21]Clough, S.A., F.X. Kneizys, R. Davies, R. Gemache, and R. Tipping, 1980: Theoretical line shape for H2O vapor: Application to continuum. In Atmospheric Water Vapor, T.D. Wilkerson and L.H. Ruhnke (eds.), Academic Press, New York, 695 pp.
[22]Manabe, S., and R.F. Strickler, 1964: Thermal equilibrium of the atmosphere with a convective adjustment. J. Atmos. Sci., 21, 361-385.
[23]Kuo, H.L., 1965: On formation and intensification of tropical cyclones through latent heat release by cumulus convection. J. Atmos. Sci., 22, 40-63.
[24]Joseph, D., 1980: Navy 10' global elevation values. National Center for Atmospheric Research notes on the FNWC terrain data set, National Center for Atmospheric Research, Boulder, CO, 3 pp.
[25]Baumgartner, A., H. Mayer and W. Metz, 1977: Weltweite Verteilung des Rauhigkeitsparameters z0 mit Anwendung auf die Energiedissipation an der Erdoberfläsche. Meteorolog. Rdsch., 30, 43-48.
[26]Dorman, J.L., and P.J. Sellers, 1989: A global climatology of albedo, roughness length and stomatal resistance for atmospheric general circulation models as represented by the Simple Biosphere model (SiB). J. Appl. Meteor., 28, 833-855.
[27]Bartman, F.L., 1980: A time variable model of Earth's albedo. NASA Contract Report 159259, NASA Grant MSG 1482, University of Michican, Ann Arbor, MI.
[28]Chalita, S., and H. Le Treut, 1994: The albedo of temperate and boreal forest and the Northern Hemisphere climate: A sensitivity experiment using the LMD GCM. Clim. Dynam., 10, 231-240.
[29]Bunker, A.F., 1976: Computation of surface energy flux and annual air-sea interaction cycles of the North Atlantic ocean. Mon. Wea. Rev., 104, 1122-1140.
[30]Corby, C.A., A. Gilchrist, and P.R. Rowntree, 1976: The U.K. Meteorological Office 5-level general circulation model. In Methods in Computational Physics, 17, J. Chang (ed.), Academic Press, New York.
[31]Budyko, M.I., 1956: Heat Balance of the Earth's Surface. Gidrometeozidat, Leningrad, 255 pp.
[32]Polcher, J., A. Harzallah, S. Bony, S. Chalita, E. Cohen-Solal, M. Forichon, F. Hourdin, H. Le Treut, P. Levan, Z. Li, and P. Rogel, 1991: Le cycle 5 du modele de circulation generale du LMD. Note Interne LMD No. 170. Laboratoire de Météorologie Dynamique, Paris, France.
[33]Golitzyn, G., and A. Grachov, 1986: Free convection of multicomponent media and parameterization of air-sea interaction at light winds. Ocean-Air Interns., 1, 57-78.
[34]Hourdin, F., 1992: Conservation du moment cinetique dans le modele de circulation generale du LMD. Note Interne LMD No. 175. Laboratoire de Météorologie Dynamique, Paris, France.
[35]Polcher, J., 1994: Etude de la sensibilité du climat tropical a la deforestation. Ph.D. dissertation, Université Pierre et Marie Curie, Paris, France.
[36]Le Treut, H., Z.-X. Li, and M. Forichon, 1994: Sensitivity of the LMD general circulation model to greenhouse forcings associated with two different cloud water parameterizations. J. Climate, 7, 1827-1841.
[37]Sundqvist, H, 1981: Prediction of stratiform clouds: Results of a 5-day forecast with a global model. Tellus, 33, 242-253.
[38]Heymsfield, A.J., and L.J. Donner, 1990: A scheme for parameterizing ice-cloud water content in general circulation models. J. Atmos. Sci., 47, 1865-1877.
[39]Ducoudre, N., K. Laval, A. Perrier, 1993: SECHIBA, a new set of parameterizations of the hydrologic exchanges at the land/atmosphere interface within the LMD atmospheric general circulation model. J. Climate, 6, 248-273.
[40]Matthews, E., 1983: Global vegetation and land use: New high-resolution databases for climate studies. J. Climate Appl. Meteor., 22, 474-487.
[41]Matthews, E., 1984: Vegetation, land use, and seasonal albedo datasets: Documentation of archived tape. Tech. Memo. 86107, National Aeronautics and Space Administration, Washington, D.C., 12 pp.
Return to LMD LMD5 (3.6x5.6 L11) 1991 Table of Contents
Return to LMD LMD6b (3.6x5.6 L11) 1995 Table of Contents
Return to LMD LMD6s (3.6x5.6 L11) 1995 Table of Contents
Return to Main Document Directory
Last updated May 2, 1996. For further information, contact: Tom Phillips ( phillips@tworks.llnl.gov )
UCRL-ID-116384