Goddard Laboratory for Atmospheres (GLA): References
[1]Kalnay, E., R. Balgovind, W. Chao, D. Edelmann, J. Pfaendtner, L. Takacs, and K. Takano, 1983: Documentation of the GLAS fourth order general circulation model, Volume I. NASA Tech. Memo. No. 86064, NASA Goddard Space Flight Center, Greenbelt, MD.
[2]Harshvardhan, R. Davies, D.A. Randall, and T.G. Corsetti, 1987: A fast radiation parameterization for general circulation models. J. Geophys. Res., 92, 1009-1016.
[3]Helfand, H.M., and J.C. Labraga, 1988: Design of a non-singular level 2.5 second order closure model for prediction of atmospheric turbulence. J. Atmos. Sci., 45, 113-132.
[4]Helfand, H.M., M. Fox-Rabinovitz, L. Takacs, and A. Molod, 1991: Simulation of the planetary boundary layer and turbulence in the GLA GCM. Proceedings of the Ninth Conference on Numerical Weather Prediction, American Meteorological Society, Denver, CO, 514-517.
[5]Sellers, P.J., Y. Mintz, Y.C. Sud, and A. Dalcher, 1986: A simple biosphere model (SiB) for use within general circulation models. J. Atmos. Sci., 43, 505-531.
[6]Sud, Y.C., and A. Molod, 1986: Rain-evaporation parameterization for the GLA GCM. GMSB/NASA Research Review--1985, NASA Goddard Space Flight Center, Greenbelt, MD.
[7]Sud, Y.C., and A. Molod, 1988: The roles of dry convection, cloud-radiation feedback processes and the influence of recent improvements in the parameterization of convection in the GLA GCM. Mon. Wea. Rev., 116, 2366-2387.
[8]Sud, Y.C., W.C. Chao, and G.K. Walker, 1991: Contributions to the implementation of Arakawa-Schubert cumulus parameterizations in the GLA GCM. J. Atmos. Sci., 48, 1573-1586.
[9]Sud, Y.C., W.C. Chao, and G.K. Walker, 1992: Role of a cumulus parameterization scheme in maintaining atmospheric circulation and rainfall in the nine-layer Goddard Laboratory for Atmospheres General Circulation Model. Mon. Wea. Rev., 120, 594-611.
[10]Sud, Y.C., and G.K. Walker, 1992: A review of recent research on improvement of physical parameterizations in the GLA GCM. In Physical Processes in Atmospheric Models, D.R. Sikka and S.S. Singh (eds.), Wiley Eastern Ltd., New Delhi, 422-479.
[11]Sud, Y.C., and G.K. Walker, 1993: A rain-evaporation and downdraft parameterization to complement a cumulus updraft scheme and its evaluation using GATE data. Mon. Wea. Rev., 11, 3019-3039.
[12]Xue, Y.-K., P.J. Sellers, J.L. Kinter II, and J. Shukla, 1991: A simplified biosphere model for global climate studies. J. Climate, 4, 345-364.
[13]Arakawa, A., and V.R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. In Methods in Computational Physics, 17, J. Chang (ed.), Academic Press, New York, 173-265.
[14]Arakawa, A., and M.J. Suarez, 1983: Vertical differencing of the primitive equations in sigma coordinates. Mon. Wea. Rev., 111, 34-45.
[15]Shapiro, R., 1970: Smoothing, filtering and boundary effects. Rev. Geophys. Space Phys., 8, 359-387.
[16]Rosenfield, J.E., M.R. Schoeberl, and M.A. Geller, 1987: A computation of the stratospheric diabatic circulation using an accurate radiative transfer model. J. Atmos. Sci., 44, 859-876.
[17]Davies, R., 1982: Documentation of the solar radiation parameterization in the GLAS climate model. NASA Tech. Memo. 83961, 57 pp. [Available from U.S. Department of Commerce, National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.]
[18]Lacis, A.A., and J. E. Hansen, 1974: A parameterization for the absorption of solar radiation in the Earth's atmosphere. J. Atmos. Sci., 31, 118-133.
[19]Chou, M.-D., 1986: Atmospheric solar heating rate in the water vapor bands. J. Atmos. Sci., 25, 1532-1542.
[20]Joseph, J.H., W.J. Wiscombe, and J.A. Weinman, 1976: The delta-Eddington approximation for radiative flux transfer. J. Atmos. Sci., 33, 2452-2459.
[21]Deepak, A., and H.E. Gerber (eds.), 1983: World Climate Research Report of the Experts Meeting on Aerosols and their Climatic Effects, World Climate Research Reports of the World Meteorological Organization, Geneva, 107 pp.
[22]Peng, L., M.-D. Chou, and A. Arking, 1982: Climate studies with a multi-layer energy balance model, Part I: Model description and sensitivity to solar constant. J. Atmos. Sci., 39, 2639-2656.
[23]Feigelson, E.M., 1978: Preliminary radiation model of a cloudy atmosphere. Part I--Structure of clouds and solar radiation. Beitr. Phys. Atmos., 51, 203-229.
[24]Chou, M.-D., 1984: Broadband water vapor transmission functions for atmospheric IR flux computation. J. Atmos. Sci., 41, 1775-1778.
[25]Chou, M.-D, and L. Peng, 1983: A parameterization of the absorption in 15-micron CO2 spectral region with application to climate sensitivity studies. J. Atmos. Sci., 40, 2183-2192.
[26]Rodgers, C.D., 1968: Some extension and applications of the new random model for molecular band transmission. Quart. J. Roy. Meteor. Soc., 94, 99-102.
[27]Roberts, R.E., J.A. Selby, and L.M. Biberman, 1976: Infrared continuum absorption by atmospheric water vapor in the 8-12 micron window. Appl. Optics, 15, 2085-2090.
[28]Arakawa, A., and W.H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large scale environment, Part I. J. Atmos. Sci., 31, 674-701.
[29]Lord, S.J., and A. Arakawa, 1980: Interaction of a cumulus cloud ensemble with the large-scale environment. Part II. J. Atmos. Sci., 37, 2677-2692.
[30]Tokioka, T., K. Yamazaki, A. Kitoh, and T. Ose, 1988: The equatorial 30-60 day oscillation and the Arakawa-Schubert penetrative cumulus parameterization. J. Meteor. Soc. Japan, 66, 883-901.
[31]Lord, S.J., W.C. Chao, and A. Arakawa, 1982: Interaction of a cumulus cloud ensemble with the large-scale environment. Part IV: The discrete model. J. Atmos. Sci., 39, 104-113.
[32]Slingo, J.M., and B. Ritter, 1985: Cloud prediction in the ECMWF model. ECMWF Tech. Report No. 46, European Centre for Medium-Range Weather Forecasts, Reading, England, 48 pp.
[33]Ruprecht, E., and W.M. Gray, 1976: Analysis of satellite-observed tropical cloud clusters, II: Thermal, moisture, and precipitation fields. Tellus, 28, 414-426.
[34]Gates, W.L., and A.B. Nelson, 1975: A new (revised) tabulation of the Scripps topography on a one-degree global grid. Part 1: Terrain heights. Tech. Report R-1276-1-ARPA, The Rand Corporation, Santa Monica, CA, 132 pp.
[35]Large, W.G., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324-336.
[36]Kondo, J., 1975: Air-sea bulk transfer coefficients in diabatic conditions. Bound. Layer Meteor., 9, 91-112.
[37]Dorman, J.L., and P.J. Sellers, 1989: A global climatology of albedo, roughness length and stomatal resistance for atmospheric general circulation models as represented by the Simple Biosphere model (SiB). J. Appl. Meteor., 28, 833-855.
[38]Pinker, R. T., and and I. Laszlo, 1992: Modeling surface solar irradiance for application on a global scale. J. Appl. Meteor., 31, 194-211.
[39]Barkstrom, B.R., E.F. Harrison, and R.B. Lee, III, 1990: Earth Radiation Budget Experiment: Preliminary seasonal results. EOS Transactions, American Geophysical Union, 71(9), 297 ff.
[40]Panofsky, H.A., 1973: Tower micrometeorology. In Workshop on Micrometeorology, D.A. Haugen (ed.), American Meteorology Society, Boston, MA, 392 pp.
[41]Clarke, R.H., 1970: Observational studies in the atmospheric boundary layer. Quart. J. Roy. Meteor. Soc., 96, 91-114.
[42]Yaglom, A.M., and B.A. Kader, 1974: Heat and mass transfer between a rough wall and turbulent fluid flow at high Reynolds and Peclet numbers. J. Fluid Mech., 62, 601-623.
[43]Helfand, H.M., 1985: A new scheme for the parameterization of the turbulent planetary boundary layer in the GLAS fourth order GCM. In Preprints of the Seventh Conference on Numerical Weather Prediction, American Meteorological Society, Montreal.
[44]Deardorff, J.W., 1972: Parameterization of the planetary boundary layer for use in general circulation models. Mon. Wea. Rev., 100, 93-106.
[45]Deardorff, J.W., 1978: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res., 83, 1889-1903.
Return to GLA Table of Contents
Return to Main Document Directory
Last modified September 12, 1995. For further information, contact: Tom Phillips (phillips@tworks.llnl.gov )
UCRL-ID-116384