Dr. Shaocheng Xie

Research Scientist, Section Head

Climate Science Section

Lawrence Livermore National Laboratory
7000 East Avenue, L-103
Livermore, CA 94551
Email: xie2@llnl.gov

Education

Ph.D., 1998, State University of New York at Stony Brook. New York, USA.

M.S., 1988, Chinese Academy of Meteorological Sciences. Beijing, China.

B.S., 1985, Nanjing Institute of Meteorology, Nanjing, China.

Professional Employment

Lawrence Livermore National Laboratory, Livermore, California, USA (1998 – present).

School of Marine and Atmospheric Sciences, SUNY at Stony Brook. New York, USA. (1993 - 1998)

National Meteorological Center, Beijing, China (1988 - 1993).

Professional Experience

My research covers weather and climate modeling, climate model diagnosis and validation, atmospheric physical parameterization developments, in particular, convection parameterizations, and observational analysis and uncertainty quantification. I work with the DOE Energy Exascale Earth System Model (E3SM) and the NSF/DOE Community Atmospheric Model (CAM). I use a hierarchy process modeling approach, including single-column model (SCM), cloud-resolving model (CRM), and the short-range hindcast approach (e.g., the Cloud-Associated Parameterizations Testbed (CAPT)), to test existing and new parameterizations with both field data and satellite observations.

As lead of the E3SM Atmospheric Group, I led/co-led the development of the first generation of E3SM Atmosphere Model (EAMv1) and its the next generation development of atmospheric physics for EAMv3. I am currently leading the development of EAMv3 with the specific emphasis on integrating and assessing various improvements in atmospheric chemistry, aerosol, clouds, and convection in E3SM.

For climate model diagnosis and validation, I co-led a team that utilized the short-range weather forecast technique in diagnosing climate model errors particularly associated with cloud-related processes. I also systematically explored the correspondence between short- and long-timescale systematic errors in current climate models and clarify over what timescales model systematic errors develop with the goal to provide essential clue to the origins of these errors.

My research on physical parameterization developments is mainly focused on convective trigger/closure for deep convection. Specifically, I would like to understand what physical processes and large-scale dynamic and thermodynamic control of cumulus convection and how these processes can be appropriately parameterized in climate models. By performing observational analyses, I demonstrated how cumulus clouds are related to environmental conditions, which resulted in the development of a physically based convective triggering function that is used in several current weather and climate models. I currently emphasize on improving the diurnal cycle of model precipitation, particularly the nocturnal elevated convection over lands, through improving convective processes in climate models. I am leading a GEWEX Global Atmospheric System Studies (GASS) project on modeling diurnal and semi-diurnal cycle of precipitation in different climate regimes.

For the field data analysis, the goal is to develop necessary data products with advanced data analysis methods and quantify their uncertainty in support of cloud modeling study and climate model development. I have been heavily involved in the DOE Atmospheric Radiation Measurement (ARM) program since 1998. One of my responsibilities is to transform the detailed ARM observations into a form that can be easily used by the climate modeling community. Some widely used data products from my ARM science infrastructure group include the ARM best estimate dataset (ARMBE) and the variational analysis derived large-scale forcing data for SCM/CRM/LES studies. We also develop tools to promote ARM data particularly to the climate modeling community, which includes the ongoing effort to develop an ARM radar simulator and an ARM-oriented process diagnostics package for GCMs.

In recent years, I have started to explore the machine learning approach to help climate model developments and address data quality issues with ARM observations.

Before I came to the United States, I had worked for 5 years at the National Meteorological Center of China. My research was in the development of numerical weather forecast model for medium-range weather forecasts, which included the development of numerical methods for calculating large-scale advection terms and testing various parameterizations of cumulus convection. I was the major project leader for the development of the second generation of the Chinese Medium-range Weather Forecast Model.

Leadership in Major US DOE Climate Projects

Climate Modeling and Evaluation

Atmospheric Radiation Measurement (ARM) and Atmospheric System Research (ASR)

Research Highlights

Awards (selected)

Professional Activities and Leadership Roles (Selected)

Invited/Plenary Presentations in Recent Years (Selected)

  1. Presenter on the “DOE National Lab Day on Capitol Hill”: “Climate Science”. Presented along with Bill Collins (BNL) and Ian Kraucunas (PNNL), Sept. 16, 2014, Washington D. C., USA.
  2. Invited talk: “Improved Treatment of Clouds and Convection for the DOE Energy Exascale Earth System Model (E3SM) Atmospheric Model Version 3”. AGU fall meeting, Dec. 9-13, 2013, San Francisco, CA, USA. AGU Fall Meeting, Dec. 12-16, 2022, Chicago, IL. 3 Invited Seminar: “Development of Atmospheric Physics for Next Generations of E3SM”, NOAA Geophysical Fluid Dynamics Laboratory, Oct. 2021, Virtual visit. 23 Invited Seminar: “Toward Improving the Representation of Diurnal Cycle of Precipitation in Climate Models”, NASA GSFC-Climate and Radiation Laboratory. April 21, 2021. Virtual Seminar. 22 Invited Seminar: “Atmospheric Physics Development for the Next Generation E3SM”, NOAA EMC Model Physics meetings. March 25, 2021. Virtual Seminar. 21 Panel Remarks on “Key processes critical to precipitation biases” session of the NOAA-DOE Precipitation Processes and Predictability Workshop, Nov. 30 - Dec. 2, 2020, virtual meeting.
    20 Invited article for 2020 GEWEX QUARTERLY “Improving the Simulation of Diurnal Precipitation over Monsoon Regimes. Dec. 2020. https://www.gewex.org/gewex-content/uploads/2020/12/Q42020.pdf.
  3. “The E3SM Next Generation Development of Atmospheric Physics”, Invited speaker, the DOE ARM/ASR annual PI meeting, June 10-13, 2019, Maryland, US.
  4. Xie, S. 2018: “Toward Bridging Field Observations and Climate Model Developments: The U. S. DOE Modeling Testbeds”, Invited Seminar, University of Arizona. Oct. 2018, Tucson, AZ.
  5. Xie, S. 2018: “The Cloud-Associated Parameterizations Testbed (CAPT) – Diagnosing Climate Model Errors with Weather Forecast Technique”, ZiJing Forum, Tsinghua University. May 2018, Beijing, China.
  6. Xie, S. 2017: “Update on the U.S. DOE ACME Model Development and Its Plan for CMIP6”, invited speaker, the US-China Climate Model Intercomparison workshop. Aug 23-25, 2017, Beijing, China.
  7. Xie, S. et al. 2017: “Recent progress on the US DOE high-resolution climate model development”, Invited speaker, the 2016 CCLiCS Workshop on Earth System Modeling, Oct. 25-28, 2016, Taipei, Taiwan.
  8. Xie. S. et al., 2016: Bridging the Gap between GCM Clouds and Detailed Ground-Based Cloud Observations – the ARM Cloud Radar Simulator, AOGS, Jul. 31 – Aug. 5, 2016, Beijing, China.
  9. Xie. S. et al., 2016: Diagnosis of Climate Model Errors in Simulating Surface Temperature over Central United States, AOGS, Jul. 31 – Aug. 5, 2016, Beijing, China.
  10. Xie, S. et al, 2015: Clouds and Precipitation Simulated by the US DOE ACME. Invited speaker, AOGS, Aug. 2-7, 2015, Singapore.
  11. Collins. W., I., Kraucunas, and S. Xie, 2014: Climate Science. Presenter, National Lab Day on Capital Hill, Sept. 16, 2014, Washington D.C, USA.
  12. Xie, S. et al., 2014: Understanding Climate Model Errors using the Weather Forecast Technique with Field Data. Invited speaker, AOGS, July 28 – Aug. Sapporo, Japan.
  13. Xie, S. et al., 2014: The DOE ARM/ASR Effort in Quantifying Uncertainty in Ground-Based Cloud Property Retrievals. Invited speaker, AOGS, July 28 – Aug. Sapporo, Japan.
  14. Xie, S. and J. Mather, 2013: The DOE ARM Program and Its Role in Climate Research. Invited speaker, The Next Generation Climate Data Products Workshop, 14-19 July 2013, Boulder, CO, USA.
  15. Xie, S., A. Protat, and C. Zhao, 2013: The US-DOE ARM/ASR Effort in Quantifying Uncertainty in Ground-Based Cloud Property Retrievals. Invited speaker, AGU fall meeting, Dec. 9-13, 2013, San Francisco, CA, USA.
  16. Xie, S., et al., 2013: Overview of the ASR QUICR Activities. Plenary talk, 2013 ASR Science Team Meeting, Mar. 18-21, 2013, Washington D. C., USA.
  17. Xie S. et al., 2012: On the Correspondence between Short- and Long- Timescale Systematic Errors in Transpose-AMIP models. Plenary talk, 1st pan-GASS meeting, September 10-14, 2012, Boulder, CO, USA.
  18. Xie. S. et al., 2012: Understanding Climate Model Parameterization Errors in Forecasts Using Field Data. Invited speaker, AOGS-AGU (WPGM) Joint Assembly, Aug. 13-17, 2012, Singapore.
  19. Xie S. et al., 2012: Correspondence between Forecast Errors and Climate Errors in Transpose-AMIP and CMIP5 Models. Invited speaker, AOGS-AGU (WPGM) Joint Assembly, Aug. 13-17, 2012, Singapore.
  20. Xie, S. et al., 2011: Development of the Large-Scale Forcing Data to Support MC3E Cloud Modeling Studies. Invited speaker, AGU fall meeting, Dec. 5-9, 2011, San Francisco, CA, USA.
  21. Xie, S., 2011: Transform Detailed ARM Observations into An Useful Climate Modeling dataset. Invited Speaker, DOE ARM Data Developer Meeting. July 16 – 17, 2011, Oak Ridge, TN, USA.

Publications (Total 137, H-Index = 46 with 20 Papers with over 100 citations, source: google scholar)

First and Second Author Peer-Reviewed Publications (42)

  1. Tao, C., Xie, S., Tang, S. et al. Diurnal cycle of precipitation over global monsoon systems in CMIP6 simulations. Clim Dyn (2022). https://doi.org/10.1007/s00382-022-06546-0

  2. Zhang, M., Xie, S., Liu, X., Lin, W., Zheng, X., Golaz, J.-C., & Zhang, Y. (2022). Cloud phase simulation at high latitudes in EAMv2: Evaluation using CALIPSO observations and comparison with EAMv1. Journal of Geophysical Research: Atmospheres, 127, e2022JD037100. https://doi.org/10.1029/2022JD037100

  3. Zhang, M., Xie, S., et al. (2022). Evaluating EAMv2 simulated stratiform mixed-phase cloud properties at Northern and Southern high latitudes against ARM measurements. Submitted to JGR.

  4. Tang, S., Xie, S., Guo, Z., Hong, S.-Y., Khouider, B., Klocke, D., et al. (2021) Long-term single-column model intercomparison of diurnal cycle of precipitation over midlatitude and tropical land. Q J R Meteorol Soc, 1– 29. Available from: https://doi.org/10.1002/qj.4222.120.

  5. Tang, S., P. Gleckler, S. Xie, et al. (2021): Evaluating the Diurnal and Semidiurnal Cycle of Precipitation in CMIP6 Models Using Satellite- and Ground-Based Observations, Journal of Climate, 34(8), 3189-3210. https://doi.org/10.1175/JCLI-D-20-0639.1. (S. Xie was the corresponding author)

  6. Lin, W. and S. Xie (2020): Chapter on Frameworks for Testing and Evaluating Fast Physics Parameterizations in Climate and Weather Forecasting Models (accepted), in the book Fast Physics in Large Scale Atmospheric Models: Parameterization, Evaluation, and Observations, edited by Y. Liu, P. Kollias and L. J. Donner.

  7. Zhang, M., S. Xie, X. Liu, et al. (2020). Toward Understanding the Simulated Phase Partitioning of Arctic Single-Layer Mixed-Phase Clouds in E3SM. Earth and Space Science, https://doi.org/10.1002/essoar.10502164.1.

  8. Xie et al. (2020) “Improving the Simulation of Diurnal Precipitation over Monsoon Regimes. Invited article for 2020 quarter 4 GEWEX QUARTERLY. https://www.gewex.org/gewex-content/uploads/2020/12/Q42020.pdf.

  9. Wang, Y.‐C., Xie, S., Tang, S., & Lin, W. (2020). Evaluation of an improved convective triggering function: Observational evidence and SCM tests. Journal of Geophysical Research: Atmospheres, 125, 2019JD031651. https://doi.org/10.1029/2019JD031651.

  10. Tang, S., S. Xie, M. Zhang, and S. Endo, 2020: Improvement of Atmospheric Objective Analysis over Sloping Terrain and Its Impact on Shallow‐Cumulus Clouds in Large‐Eddy Simulations. Journal of Geophysical Research: Atmospheres, https://doi.org/10.1029/2020JD032492.

  11. Zhang, C., S. Xie, C. Tao, S. Tang, T. Emmeneger, J. Neelin, K. Schiro, and W. Lin (2020): The ARM Data-oriented Metrics and Diagnostics Package for Climate Models - A New Tool for Evaluating Climate Models with Field Data. Bull. Amer. Meteor. Soc., doi: https://doi.org/10.1175/BAMS-D-19-0282.1.

  12. Xie, S. et al. (2019): Improved Diurnal Cycle of Precipitation in E3SM with a Revised Convective Triggering Function. Journal of Advances in Modeling Earth Systems, 11. https://doi.org/10.1029/2019MS001702.

  13. Rasch, P. J., S. Xie, P. Ma, W. Lin, et al. (2019): An Overview of the Atmospheric Component of the Energy Exascale Earth System Model. Journal of Advances in Modeling Earth Systems, DOI:10.1029/2019MS001629.

  14. Tang, S., Xie, S., Zhang, M., Tang, Q., Zhang, Y., Klein, S. A., et al (2019). Differences in Eddy‐Correlation and Energy‐Balance Surface Turbulent Heat Flux Measurements and Their Impacts on the Large‐scale Forcing Fields at the ARM SGP Site. Journal of Geophysical Research: Atmospheres, 124. https://doi.org/10.1029/2018JD029689.

  15. Xie, S., Lin, W., Rasch, P. J., Ma, P.‐L., Neale, R., Larson, V. E., et al. (2018). Understanding cloud and convective characteristics in version 1 of the E3SM atmosphere model. Journal of Advances in Modeling Earth Systems, 10, 2618–2644. https://doi.org/10.1029/2018MS001350.

  16. Zhang, Y. S. Xie, et al. 2018: Evaluation of clouds in version 1 of the E3SM atmosphere model with satellite simulators. Journal of Advances in Modeling Earth Systems, 11. https://doi.org/10.1029/2018MS001562.

  17. Tang, Q., S. Xie, Y. Zhang, T. Phillips, J. Santanello, D. Cook, L. Riihimaki, and K. Gaustad, 2018: Heterogeneity in Warm-Season Land-Atmosphere Coupling over the U.S. Southern Great Plains. J. Geophys. Res., (Atmospheres), https://doi.org/10.1029/2018JD028463.

  18. Zhang, Y., S. Xie, et al., 2018: The ARM cloud radar simulator for global climate models: Bridging field data and climate models. Bull. Amer. Meteor. Soc., 99, 21–26, https://doi.org/10.1175/BAMS-D-16-0258.1.

  19. Zhang, C., S. Xie, S. A. Klein, H. Ma, S. Tang, K. Van Weverbery, C. J. Morcrette, and J. Petch, 2018: CAUSES: Diagnosis of the Summertime Warm Bias in CMIP5 Climate Models at the ARM Southern Great Plains Site. J. Geophys. Res. Atmos., 123, 2968–2992. DOI: 10.1002/2017JD027200.

  20. Tang, S., S. Xie, et al. 2016: Large-Scale Vertical Velocity, Diabatic Heating and Drying Profiles Associated with Seasonal and Diurnal Variations of Convective Systems Observed in the GoAmazon2014/5 Experiment, Atmos. Chem. Phys. Discuss., 2016, 1-39, doi: 10.5194/acp-2016-644.

  21. Xie, S., Y. Zhang, S. E. Giangrande, M. P. Jensen, R. McCoy, and M. Zhang, 2014: Interactions between Cumulus Convection and Its Environment as Revealed by the MC3E Sounding Array. J. Geophys. Res. Atmos., 119, 11784–11808, doi: 10.1002/2014JD022011.

  22. Ma, H., S. Xie, S. Klein, et al. 2014: On the Correspondence between Mean Forecast Errors and Climate Errors in CMIP5 Models. J. Climate. 27, 1781-1798. doi: 10.1175/JCLI-D-13-00474.1.

  23. Zhao, C., S. Xie, X. Chen, M. Jensen, and M. Dunn, 2014: Quantifying uncertainties of cloud microphysical property retrievals with a perturbation method. J. Geophys. Res. Atmos., 119, 5375–5385, doi:10.1002/2013JD021112.

  24. Xie, S., X. Liu, C. Zhao, and Y. Zhang, 2013: Sensitivity of CAM5 Simulated Arctic Clouds and Radiation to Ice Nucleation, J. Clim. 26, 5981-5999, DOI: 10.1175/JCLI-D-12-00517.1.

  25. Ma, H., S. Xie, J. Boyle, S. Klein, and Y. Zhang, 2013: Development of Metrics and Diagnostics for CAM Climate Model Short-range Forecasts. J. Climate. 26, 1516-1534. doi: 10.1175/JCLI-D-12-00235.1.

  26. Zhang, Y., S. Xie, C. Covey, D. D. Lucas, P. Gleckler, S. Klein, J. Tannahill, C. Doutriaux,and R. Klein, 2012: Regional assessment of the parameter-dependent performance of CAM4 in simulating tropical clouds. Geophys. Res. Lett., 39, L14708, doi:10.1029/2012GL052184.

  27. Xie, S., H. Ma, J. Boyle, S. Klein, and Y. Zhang, 2012: On the Correspondence between Short- and Long- Timescale Systematic Errors in CAM4/CAM5 for the Years of Tropical Convection. J. Clim. 25, 7937–7955. doi: 10.1175/JCLI-D-12-00134.1.

  28. Liu, X., S. Xie, J. Boyle, S. A. Klein, X. Shi, Z. Wang, W. Lin, S. J. Ghan, M. Earle, P. S. K. Liu, and A. Zelenyuk1, 2011: Testing Cloud Microphysics Parameterizations in NCAR CAM5 with ISDAC and M-PACE Observations. J. Geophys. Res., 116, D00T11, doi:10.1029/2011JD015889.

  29. Xie, S., and 16-coauthors, 2010: ARM climate modeling best estimate data, Bull. Amer. Meteor. Soc, 91, 13–20 , doi:10.1175/2009BAMS2891.1 .

  30. Xie, S., T. Hume, C. Jakob, S. Klein, R. McCoy, and M. Zhang, 2010: Observed large-scale structures and diabatic heating and drying profiles during TWP-ICE, J. Climate, 23, 57-79, doi:10.1175/2009JCLI3071.1< .

  31. Xie, S., J. Boyle, S. A. Klein, X. Liu and S. Ghan, 2008: Simulations of Arctic Mixed-Phase Clouds in Forecasts with CAM3 and AM2 for M-PACE, Journal of Geophysical Research, 113, D04211, doi:10.1029/2007JD009225.

  32. Liu, X., S. Xie, and S. J. Ghan, 2007: Evaluation of a new mixed-Phase cloud microphysics parameterization with the NCAR single column climate model (SCAM) and ARM M-PACE observations, Geophysical Research Letter, 34, L23712, doi:10.1029/2007GL031446.

  33. Xie, S., S. Klein, M. Zhang, J. Yio, R. Cederall, and R. McCoy, 2006: Developing large-scale forcing data for single-column and cloud-resolving models from the Mixed-Phase Arctic Cloud Experiment. J. Geophys. Res., 111, D19104, doi:10.1029/2005JD006950 .

  34. Xie, S., et al., 2006: An assessment of ECMWF analyses and model forecasts over the North Slope of Alaska using observations from the ARM Mixed-Phase Arctic Cloud Experiment. J. Geophys. Res., 111, D05107, doi:10.1029/2005JD006509 .

  35. Xie, S., and 24 co-authors, 2005: Simulations of midlatitude frontal clouds by SCMs and CSRMs during the ARM March 2000 Cloud IOP. J. Geophys. Res., 110, D15S03, doi:10.1029/2004JD005119

  36. Xie, S., M. H. Zhang, J. S. Boyle, R. T. Cederwall, G. L. Potter, and W. Y. Lin, 2004: Impact of a revised convective triggering mechanism on CAM2 model simulations: results from short-range weather forecasts. J. Geophys. Res. 109, D14102, doi:10.1029/2004JD004692.

  37. Xie, S., R. T. Cederwall, and M. H. Zhang, 2004: Developing long-term single-column model/cloud system-resolving model forcing using numerical weather prediction products constrained by surface and top of the atmosphere observations. J. Geophys. Res., 109, D01104, doi:10.1029/2003JD004045

  38. Xie, S., R. T. Cederwall, M. H. Zhang, and J. J. Yio, 2003: Comparison of SCM and CSRM Forcing Data Derived from the ECMWF Model and From Objective Analysis at the ARM SGP Site. J. Geophys. Res., 108 (D16), 4499, doi:10.1029/2003JD003541.

  39. Xie, S., et al., 2002: Intercomparison and Evaluation of Cumulus Parameterization under Summertime Midlatitude Continental Conditions. Q. J. R. Meteorol. Soc., 128, 1095-1136, DOI: 10.1256/003590002320373229

  40. Xie, S., and M. H. Zhang, 2000: Impact of the Convection triggering Function on Single-Column Model Simulations. J. Geophys. Res., 105, 14983-14996, DOI: 10.1029/2000JD900170

  41. Xie, S. C., 1991: A New Positive Definite Advection Scheme and its Application to the Moisture Equation. ACTA METEOROLOGICA SINICA, Vol.49, 11-20.

  42. Tian Y., and S. C. Xie, 1987: Test of Explicit Integration Schemes for the Barotropic Primitive Equation Model. Journal of Nanjing Institute of Meteorology, Vol.10, 95-102.

Other Peer-Reviewed Publications (95)

  1. Dong, X., Zheng, X., Xi, B., & Xie, S. (2023). A Climatology of Midlatitude Maritime Cloud Fraction and Radiative Effect Derived from the ARM ENA Ground-Based Observations, Journal of Climate, 36(2), 531-546. Retrieved Jan 25, 2023, from https://journals.ametsoc.org/view/journals/clim/36/2/JCLI-D-22-0290.1.xml.

  2. Golaz, J.-C., Van Roekel, L. P., Zheng, X., Roberts, A. F., Wolfe, J. D., Lin, W., et al. (2022). The DOE E3SM Model version 2: Overview of the physical model and initial model evaluation. Journal of Advances in Modeling Earth Systems, 14, e2022MS003156. https://doi.org/10.1029/2022MS003156

  3. Zhang, C. et al. (2022). The E3SM Diagnostics Package (E3SM Diags v2.7): a Python-based diagnostics package for Earth system model evaluation. Geosci. Model Dev., 15, 9031–9056, 2022. https://doi.org/10.5194/gmd-15-9031-2022.

  4. Wu, M., Wang, H., Easter, R. C., Lu, Z., Liu, X., Singh, B., et al. (2022). Development and evaluation of E3SM-MOSAIC: Spatial distributions and radiative effects of nitrate aerosol. Journal of Advances in Modeling Earth Systems, 14, e2022MS003157. https://doi.org/10.1029/2022MS003157

  5. Xue, Y., Diallo, I., Boone, A. A., Yao, T., Zhang, Y., Zeng, X., Neelin, J. D., et al. (2022). Spring Land Temperature in Tibetan Plateau and Global-Scale Summer Precipitation: Initialization and Improved Prediction, Bulletin of the American Meteorological Society, 103(12), E2756-E2767. Retrieved Jan 25, 2023, from https://journals.ametsoc.org/view/journals/bams/103/12/BAMS-D-21-0270.1.xml.

  6. Leung, L. R., et al. (including S. Xie) (2022): Exploratory precipitation metrics: spatiotemporal characteristics, process-oriented, and phenomena-based, Journal of Climate. https://journals.ametsoc.org/view/journals/clim/aop/JCLI-D-21-0590.1/JCLI-D-21-0590.1.xml.

  7. Feng, Y., Wang, H., Rasch, P. J., Zhang, K., Lin, W., Tang, Q., et al. (2022). Global dust cycle and direct radiative effect in E3SM version 1: Impact of increasing model resolution. Journal of Advances in Modeling Earth Systems, 14, e2021MS002909. https://doi.org/10.1029/2021MS002909

  8. Zhang, K.,et al. (including S. Xie) (2022): Effective radiative forcing of anthropogenic aerosols in E3SMv1: historical changes, causality, decomposition, and parameterization sensitivities, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2021-1087, 2022

  9. Voldoire, A., Roehrig, R., Giordani, H., Waldman, R., Zhang, Y., Xie, S., and Bouin, M.-N.(2022) : Assessment of the sea surface temperature diurnal cycle in CNRM-CM6-1 based on its 1D coupled configuration, Geosci. Model Dev., 15, 3347–3370, https://doi.org/10.5194/gmd-15-3347-2022, 2022.

  10. Emmenegger, T., Kuo, Y., Xie, S., Zhang, C., Tao, C., & Neelin, J. D. (2022). Evaluating Tropical Precipitation Relations in CMIP6 Models with ARM Data, Journal of Climate, 35(19), 2743-2760. Retrieved Jan 25, 2023, from https://journals.ametsoc.org/view/journals/clim/35/19/JCLI-D-21-0386.1.xml

  11. Ma, P.-L., et al. (including S. Xie) (2022): Better calibration of cloud parameterizations and subgrid effects increases the fidelity of the E3SM Atmosphere Model version 1, Geosci. Model Dev., 15, 2881–2916, https://doi.org/10.5194/gmd-15-2881-2022, 2022.

  12. Ma, H.-Y., Zhang, K., Tang, S., Xie, S., & Fu, R. (2021). Evaluation of the causes of wet-season dry biases over Amazonia in CAM5. Journal of Geophysical Research: Atmospheres, 126, e2020JD033859. https://doi.org/10.1029/2020JD033859.

  13. Wang, J, J Fan, Z Feng, K Zhang, E Roesler, B Hillman, J Shpund, W Lin, and S Xie. 2021. “Impact of a New Cloud Microphysics Parameterization on the Simulations of Mesoscale Convective Systems in E3SM.” Journal of Advances in Modeling Earth Systems 13(11). https://doi.org/10.1029/2021ms002628.

  14. Chen, H., Jin, F.-F., Zhao, S., Wittenbert, A. T., and Xie, S., (2021): ENSO Dynamics in the E3SM-1-0, CESM2, and GFDL-CM4 Climate Models. J. Climate, 34(23), 9365-9384. https://doi.org/10.1175/JCLI-D-21-0355.1.

  15. Zhang, T., Lin, W., Vogelmann, A. M., Zhang, M., Xie, S., Qin, Y., & Golaz, J.-C. (2021). Improving convection trigger functions in deep convective parameterization schemes using machine learning. Journal of Advances in Modeling Earth Systems, 13, e2020MS002365. https://doi.org/10.1029/2020MS002365

  16. Ciesielski, P. E., Johnson, R. H., Tang, S., Zhang, Y., & Xie, S. (2021). Comparison of conventional and constrained variational methods for computing large-scale budgets and forcing fields. Journal of Geophysical Research: Atmospheres, 126, e2021JD035183. https://doi.org/10.1029/2021JD035183

  17. Xue, Y., et al. (including S. Xie) (2021): Impact of Initialized Land Surface Temperature and Snowpack on Subseasonal to Seasonal Prediction Project, Phase I (LS4P-I): Organization and Experimental design, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2020-329, Accepted.

  18. Chen, C.-C., et al. (including S. Xie) (2021). Effects of organized convection parameterization on the MJO and precipitation in E3SMv1. Part I: Mesoscale heating. Journal of Advances in Modeling Earth Systems, 13, e2020MS002401. https://doi.org/10.1029/2020MS002401.

  19. Cui, Z., G. Zhang, Y. Wang, and S. Xie (2021): Understanding the Roles of Convective Trigger Functions in the Diurnal Cycle of Precipitation in the NCAR CAM5. J. Climate. https://doi.org/10.1175/JCLI-D-20-0699.1.

  20. Tang, Q., M. J. Prather, J. Hsu, D. Ruiz, P. Cameron-Smith, S. Xie, and J. C. Golaz (2021): Evaluation of the interactive stratospheric ozone (O3v2) module in the E3SM version 1 Earth system model, Geosci. Model Dev., 14, 1219–1236, https://doi.org/10.5194/gmd-14-1219-2021, 2021.

  21. Wang Y., W. Xia, X. Liu, S. Xie, et al. (2021): Disproportionate control on aerosol burden by light rain. Nat. Geosci. 14, 72–76 (2021). https://doi.org/10.1038/s41561-020-00675-z.

  22. Wang Y., G. Zhang, S. Xie, W. Lin, et al. (2021): Effects of coupling a stochastic convective parameterization with the Zhang–McFarlane scheme on precipitation simulation in the DOE E3SMv1.0 atmosphere model, Geosci. Model Dev., 14, 1575–1593, https://doi.org/10.5194/gmd-14-1575-2021, 2021.

  23. Tao, C., et al. (including S. Xie), 2021: Land–Atmosphere Coupling at the U.S. Southern Great Plains: A Comparison on Local Convective Regimes between ARM Observations, Reanalysis, and Climate Model Simulations, Journal of Hydrometeorology, 22(2), 463-481. https://doi.org/10.1175/JHM-D-20-0078.1

  24. Ma, H.-Y., A. C. Siongco, S. A. Klein, S. Xie, A. R. Karspeck, K. Raeder, J. L. Anderson, J. Lee, B. P. Kirtman, W. J. Merryfield, H. Murakami, and J. J. Tribbia, 2021: On the Correspondence between Seasonal Forecast Biases and Long-Term Climate Biases in Sea Surface Temperature, Journal of Climate, 34(1), 427-446. https://doi.org/10.1175/JCLI-D-20-0338.1.

  25. Ma, H.-Y., C. Zhou, Y. Zhang, S. A. Klein, M. D. Zelinka, X. Zheng, S. Xie, W.-T. Chen, and C.-M. Wu, 2021: Evaluating climate model moist processes from diurnal to interannual time scales using a multi-year ensemble of short-range hindcasts. Geosci. Model Dev., 14, 73–90, 2021. https://doi.org/10.5194/gmd-14-73-2021.

  26. Wang, H., Easter, R. C., Zhang, R., Ma, P.‐L., Singh, B., Zhang, K., et al. ( 2020). Aerosols in the E3SM Version 1: New developments and their impacts on radiative forcing. Journal of Advances in Modeling Earth Systems, 12, e2019MS001851. https://doi.org/10.1029/2019MS001851.

  27. Neale, R. B., W. Lin, S. Xie, C. Hannay, J. Bacmeister, 2020: Sub-Seasonal Tropical Variability in the DOE EarthEnergy Exascale System Model (E3SM) version 1. Submitted to JAMES.

  28. Bogenschutz, P. A., Tang, S., Caldwell, P. M., Xie, S., Lin, W., and Chen, Y.-S.: The E3SM version 1 single-column model, Geosci. Model Dev., 13, 4443–4458, https://doi.org/10.5194/gmd-13-4443-2020, 2020.

  29. Siongco, A.C., H. Ma, S.A. Klein, S. Xie, A.R. Karspeck, K. Raeder, and J.L. Anderson, 2020: A Hindcast Approach to Diagnosing the Equatorial Pacific Cold Tongue SST Bias in CESM1. J. Climate, 33, 1437–1453, https://doi.org/10.1175/JCLI-D-19-0513.1.

  30. Caldwell, P. M., et al. (including S. Xie) (2019). The DOE E3SM coupled model version 1: Description and results at high resolution. Journal of Advances in Modeling Earth Systems, 11, 4095– 4146. https://doi.org/10.1029/2019MS001870.

  31. Wang, H., et al. (including S. Xie) ( 2020). Aerosols in the E3SM Version 1: New developments and their impacts on radiative forcing. Journal of Advances in Modeling Earth Systems, 12, e2019MS001851. https://doi.org/10.1029/2019MS001851.

  32. Zheng, X., Golaz, J.‐C., Xie, S., Tang, Q., Lin, W., Zhang, M., et al. ( 2019). The summertime precipitation bias in E3SM Atmosphere Model version 1 over the Central United States. Journal of Geophysical Research: Atmospheres, 124, 8935– 8952. https://doi.org/10.1029/2019JD030662.

  33. Tao, C., Zhang, Y., Tang, S., Tang, Q., Ma, H.‐Y., Xie, S., & Zhang, M. ( 2019). Regional moisture budget and land‐atmosphere coupling over the U.S. Southern Great Plains inferred from the ARM long‐term observations. Journal of Geophysical Research: Atmospheres, 124, 10091– 10108. https://doi.org/10.1029/2019JD030585.

  34. Zhang, M., Liu, X., et al (including S. Xie) ( 2019). Impacts of representing heterogeneous distribution of cloud liquid and Ice on phase partitioning of Arctic mixed‐phase clouds. Journal of Geophysical Research: Atmospheres, 124, 13071– 13090. https://doi.org/10.1029/2019JD030502.

  35. Golaz, J. C. et al. (including S. Xie) (2019): The DOE E3SM Coupled Model Version 1: Overview and Evaluation at Standard Resolution, JAMES, https://doi.org/10.1029/2018MS001603.

  36. Tang, Q., S. A. Klein, S. Xie, W. Lin, et al. (2019). Regionally refined capability in E3SM Atmosphere Model Version 1 (EAMv1) and applications for high-resolution modelling. Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-11.

  37. Jiang, T., Evans, K., Branstetter, M., et al. (including S. Xie) (2019). Northern Hemisphere blocking in ∼25‐km‐resolution E3SM v0.3 atmosphere‐land simulations. Journal of Geophysical Research: Atmospheres, 124. https://doi.org/10.1029/2018JD028892.

  38. Qian, Y., and coauthors including S. Xie, 2018: Parametric Sensitivity and Uncertainty Quantification in the Version 1 of E3SM Atmosphere Model Based on Short Perturbed Parameter Ensemble Simulations. J. Geophys. Res. Atmos., https://doi.org/10.1029/2018JD028927.

  39. Zhang, K., Rasch, P. J., Taylor, M. A., Wan, H., Leung, R., Ma, P.-L., Golaz, J.-C., Wolfe, J., Lin, W., Singh, B., Burrows, S., Yoon, J.-H., Wang, H., Qian, Y., Tang, Q., Caldwell, P., and Xie, S.: Impact of numerical choices on water conservation in the E3SM Atmosphere Model version 1 (EAMv1), Geosci. Model Dev., 11, 1971-1988, https://doi.org/10.5194/gmd-11-1971-2018, 2018

  40. Zhang, T., Zhang, M., Lin, W., Lin, Y., Xue, W., Yu, H., He, J., Xin, X., Ma, H.-Y., Xie, S., and Zheng, W. 2018: Automatic tuning of the Community Atmospheric Model (CAM5) by using short-term hindcasts with an improved downhill simplex optimization method, Geosci. Model Dev., 11, 5189-5201, https://doi.org/10.5194/gmd-11-5189-2018.

  41. Feldman, D. R., W. D. Collins, S.C. Biraud, M.D. Risser, D.D. Turner, P.J. Gero, S. Xie, E.J. Mlawer, T.R Shippert, L.D. Riihimaki, E.J. Dlugokency, P.C. Novelli, D. Helmig, J. Hueber, M. S. Torn, 2018: First observation of CH4 surface radiative forcing and its thermodynamic dependence, Nature Geoscience. 11, 238-241. DOI:10.1038/s41561-018-0085-9.

  42. Ma, H.-Y., S. A. Klein, S. Xie, et al. 2018: CAUSES: On the role of surface energy budget errors to the warm surface air temperature error over the Central U.S. J. Geophys. Res. Atmos., 123, 2888–2909. DOI: 10.1002/2017JD027194.

  43. Van Weverberg, K., C. J. Morcrette, J. Petch, S. A. Klein, H.-Y. Ma, C. Zhang, S. Xie, Q. Tang, W. I. Gustafson, Y. Qian, L. K. Berg, M. Wang, Y. Liu, M. Ahlgrimm,R. Forbes, E. Bazile, R. Roehrig, J. Cole, W. Merryfield, W.-S. Lee, F. Cheruy,L. Mellul, Y.-C. Wang, K. Johnson, and M. Khaiyer, 2018: CAUSES: Attribution of surface radiation biases in NWP and climate models near the U.S. Southern Great Plains. J. Geophys. Res. Atmos., 123, 3612–3644. DOI: 10.1002/2017JD027188.

  44. Morcrette, C. J., and coauthors including H.-Y. Ma, 2018: Introduction to CAUSES: Near-surface temperature errors in NWP and climate model 5-day hindcasts near the Southern Great Plains. J. Geophys. Res. Atmos., 123, 2655–2683. DOI: 10.1002/2017JD027199.

  45. Qin, Y., Y. Lin, S. Xue, H. Ma, and S. Xie, 2018: A diagnostic PDF cloud scheme to improve subtropical low clouds in NCAR Community Atmosphere Model (CAM5), J. Adv. Model. Earth Sys., 10, 320–341. DOI: 10.1002/2017MS001095.

  46. Zhang, K., P. J. Rasch, M. A. Taylor, H. Wan, R. Leung, P.-L. Ma, J.-C. Golaz, J. Wolfe, W. Lin, B. Singh, S. Burrows, J.-H. Yoon, H.Wang, Y. Qian, Q. Tang, P. Caldwell, and S. Xie (2018), Impact of numerical choices on water conservation in the E3SM Atmosphere Model version 1 (EAMv1), Geosci. Model Dev., 11(5), 1971–1988, doi:10.5194/gmd-11-1971-2018.

  47. Phillips, T. J., S. A. Klein, H. Ma, Q. Tang, S. Xie, I. N. Williams, J. A. Santanello, D. R. Cook, and M. S. Torn, 2017: Using ARM observations to evaluate climate model simulations of land-atmosphere coupling on the U.S. Southern Great Plains. J. Geophys. Res., 122, 11,524–11,548. Doi:10.1002/2017JD027141

  48. Giangrande, S. E., Z. Feng, M. P. Jensen, J. Comstock…, S. Xie, …, 2017: Cloud characteristics, thermodynamic controls and radiative impacts during the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) experiment, Atmos. Chem. Phys., 17, 14519-14541, https://doi.org/10.5194/acp-17-14519-2017.

  49. Tang, S., M. Zhang, and S. Xie, 2017: Investigating the Scale Dependence of SCM Simulated Precipitation and Clouds by Using Gridded Forcing Data at SGP. J. Geophys. Res., 122, 8724–8738, https://doi.org/10.1002/2017JD026565

  50. Zhang, Y., S. A. Klein, J. Fan, A. Chundra, P. Kollias, S. Xie and S. Tang, 2017: Large-eddy simulation of shallow cumulus clouds over land: A composite case based on ARM long-term observations at its Southern Great Plains site. J. Atmos. Sci., 74, 3229-3251, DOI: 10.1175/JAS-D-16-0317.1.

  51. Ciesielski, P. E., R. H. Johnson, X. Jiang, Y. Zhang, and S. Xie (2017), Relationships between radiation,clouds, and convection during DYNAMO, J. Geophys. Res. Atmos., 122, 2529–2548, doi:10.1002/2016JD025965. Highlighted by Eos: https://eos.org/research-spotlights/what-makes-the-biggest-cycle-in-tropical-weather-tick

  52. Zhang, M., Somerville, R.C. and Xie, S., 2016. The SCM Concept and Creation of ARM Forcing Datasets. Meteorological Monographs, 57, pp.24-1. DOI: http://dx.doi.org/10.1175/AMSMONOGRAPHS-D-15-0040.1.

  53. Tang, S. , M. Zhang, and S. Xie 2015: Ensemble Constrained Variational Analysis of Atmospheric Forcing Data for Process Models and Application to Evaluate Simulated Clouds in CAM. J. Geophys. Res. Atmos., doi: 10.1002/2015JD024167.

  54. Ma, H. et al. (including S. Xie) 2015: Evaluation and diagnosis of physical processes in global climate models with an improved hindcast approach. Journal of Advances in Modeling Earth Systems. J. Adv. Model. Earth Syst., 7, 1810–1827, doi:10.1002/2015MS000490.

  55. Jensen, M.P., W.A. Petersen, A. Bansemer, N. Bharadwaj, L.D. Carey, D.J. Cecil, S.M. Collis, A.D. Del Genio, B. Dolan, J. Gerlach, S.E. Giangrande, A. Heymsfield, G. Heymsfield, P. Kollias, T.J. Lang, S.W. Nesbitt, A. Neumann, M. Poellot, S.A. Rutledge, M. Schwaller, A. Tokay, C.R. Williams, D.B. Wolff, S. Xie, and E.J. Zipser, 2015: The Midlatitude Continental Convective Clouds Experiment (MC3E). Bull. Amer. Meteorol. Soc., in press, doi:10.1175/BAMS-D-14-00228.1.

  56. Muhlbauer, A., T. P. Ackerman, P. R. Lawson, S. Xie, and Y. Zhang, 2015: An observationally-based study case of midlatitude cirrus for cloud-permitting and cloud-resolving models. J. Geophys. Res. Atmos., 120, 6597-6618, doi:10.1002/2014JD022570.

  57. Chen, X., Q. Tang, S. Xie, and C. Zhao (2015), A variance-based decomposition and global sensitivity index method for uncertainty quantification: Application to retrieved ice cloud properties. J. Geophys. Res. Atmos., 120, 4234–4247. doi: 10.1002/2014JD022750

  58. Boyle, J. S., Klein, S. A., Lucas, D. D., Ma, H. -Y. ., Tannahill, J. and Xie, S. (2015), The parametric sensitivity of CAM5’s MJO. J. Geophys. Res. Atmos., 120: 1424–1444. doi: 10.1002/2014JD022507.

  59. Vogelmann, A. M., A. M. Fridlind, T. Toto, S. Endo, W. Lin, J. Wang, S. Feng, Y. Zhang, D. D. Turner, Y. Liu, Z. Li, S. Xie, A. S. Ackerman, M. Zhang, and M. Khairoutdinov (2015), RACORO continental boundary layer cloud investigations: 1. Case study development and ensemble large-scale forcings. J. Geophys. Res. Atmos., 120, 5962–5992. doi: 10.1002/2014JD022713.

  60. Jensen, M. P., Toto, T., Troyan, D., Ciesielski, P. E., Holdridge, D., Kyrouac, J., Schatz, J., Zhang, Y., and Xie, S.: The Midlatitude Continental Convective Clouds Experiment (MC3E) sounding network: operations, processing and analysis, Atmos. Meas. Tech., 8, 421-434, doi:10.5194/amt-8-421-2015, 2015.

  61. Petch, J., A. Hill, L. Davis, A. Fridlind, C. Jakob, Y. Lin, S. Xie, and P. Zhu, 2014: Evaluation of intercomparison of four different types of model simulating TWP-ICE, Q. J. R. Meteorol. Soc., 140, 826-837, DOI: 10.1002/qj.2192.

  62. Lin, Y., M. Zhao, Y. Ming, J-C. Golaz, L. J. Donner, S. A. Klein, V. Ramaswamy, and S. Xie, 2013: Precipitation partitioning, tropical clouds and intraseasonal variability in GFDL AM2. J. Clim. , 26, 5453–5466. doi: 10.1175/JCLI-D-12-00442.1.

  63. Davies, L., et al. (including S. Xie), 2013: A Single Column Model Ensemble approach applied the TWP-ICE experiment. J. Geophys. Res., 118, 6544-6563, doi:10.1002/jgrd.50450.

  64. Davies, L. C. Jakob, V. Kumar, P. May and S. Xie, 2013: Relationships between the large-scale atmosphere and the small-scale state for Darwin, Australia. J. Geophys. Res., accepted. DOI: 10.1002/jgrd.50645.

  65. Qian Y, CN Long, H Wang, JM Comstock, SA McFarlane, and S Xie. 2012: Evaluation of Cloud Fraction and Its Radiative Effect Simulated by IPCC AR4 Global Models Against ARM Surface Observations, Atmos. Chem. Phys., 12, 1785-1810. DOI:10.5194/acp-12-1785-2012.

  66. Zhao, C., S. A. Klein, S. Xie, X. Liu, J. S. Boyle, and Y. Zhang, 2012: Aerosol First Indirect effects on non-precipitating low-level liquid cloud properties as simulated by CAM5 at ARM sites, Geophys. Res. Lett., 39, L08806, doi:10.1029/2012GL051213.

  67. Fridlind, A., et al. (including S. Xie), 2012: A Cloud-Resolving Model Intercomparison Based on the Tropical Warm Pool–International Cloud Experiment, Part I: Specification and Results versus Domain-Wide Observations. J. Geophys. Res., 117, D05204 DOI: 10.1029/2011JD016595.

  68. Huang, D., C. Zhao, M. Dunn, X. Dong, G. G. Mace, M. P. Jensen, S. Xie, and Y. Liu, 2012: An intercomparison of radar-based liquid cloud microphysics retrievals and implication for model evaluation studies. Atmos. Meas. Tech., 5, 1409-1424 DOI: 10.5194/amt-5-1409-2012.

  69. Lin, Y., L. J. Donner, J. Petch, P. Bechtold, J. Boyle, S. A. Klein, T. Komori, K. Wapler, M. Willett, X. Xie, M. Zhao, S. Xie, S. A. MaFarlane, C. Schumacher, 2012: TWP-ICE global atmospheric model intercomparison: Convection responsiveness and resolution impact. J. Geophys. Res., 117, D09111, doi: 10.1029/2011JD017018.

  70. Chuang, C. C., J. Kelly, J. Boyle, and S. Xie, 2012: Sensitivity of Aerosol Indirect Effects to Cloud Nucleation and Autoconversion Parameterizations in Short-Range Weather Forecasts over the Southern Great Plains During May 2003 IOP. Journal of Advances in Modeling Earth Systems, DOI: 10.1029/2012MS000161.

  71. Zeng, X., W. Tao, T. Matsui, S. Xie, S. Lang, M. Zhang, D. Starr, and X. Li 2011: Estimating the ice crystal enhancement factor in the tropics. J. Atmos. Sci. 68, 1424-1434.

  72. McFarquhar, G., S. Ghan, et al. (including S. Xie), 2011: Indirect and Semi-Direct Aerosol Campaign (ISDAC): The Impact of Arctic Aerosols on Clouds, Bull. Amer. Meteor.,doi: 10.1175/2010BAMS2935.1.

  73. Kennedy, A., X. Dong, B. Xi, S. Xie, Y. Zhang, and J. Chen, 2011: A Comparison of MERRA and NARR Reanalysis Datasets with the DOE ARM SGP Continuous Forcing data. J. climate, 24 4541-4557 DOI: 10.1175/2011JCLI3978.1.

  74. Woolnough, S. J., P. N. Blossey, K .- M. Xu, P. Bechtold, J.-P. Chaboureau, T. Hosomi, S.F. Iacobellis, Y. Luo, J. C. Petch, R. Y. Wong, and S. Xie, 2010: Modeling convective processes during the suppressed phase of a Madden-Julian Oscillation: Comparing single-column models with cloud-resolving models. Q. J. R. Meteorol. Soc. ,136 , 333-353, DOI:10.1002/qj.568.

  75. Wang, W., X. Liu, S. Xie, J. Boyle, and S. McFarlane, 2009: Testing ice microphysics parameterizations in NCAR CAM3 using TWP-ICE data, J. Geophys. Res., 114, D14107, doi:10.1029/2008JD011220 .

  76. Zeng, X., W. Tao, M.Zhang, A. Hou, S. Xie, S. Lang, X. li, D. Starr, and X. Li, 2009: A contribution by ice neclei to global warming. Q. J. R. Meteorol. Soc., 135, 1614-1629. DOI:10.1002/qj.449 .

  77. Klein et al. (including S. Xie) 2009: Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud, Q. J. R. Meteorol. Soc., . Soc., 135: 979-1002. DOI:10.1002/qi.416 .

  78. Marrison etal. (including S. Xie) 2009: Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part II: Multi-layered cloud, Q. J. R. Meteorol. Soc., 135: doi :10.1002 /qj.415.

  79. Zeng, X., W. Tao et al., S. Xie , et al., 2009: The indirect effect of ice nuclei on atmospheric radiation. J. Atmos. Sci. 66, 41-61. doi: 10.1175/2008JAS2778.1

  80. Boyle, J., S. Klein, G. Zhang, S. Xie, R. Pincus, and X. Wei, 2008: Climate model forecast experiments for TOGA-COARE. Mon. Wea. Rev., 136, 808-832. doi: 10.1175/2007MWR2145.1

  81. Guo, H., J. Penner, M. Herzog, and S. Xie, 2007: In vestigation of the first and second aerosol indirect effects on clouds during the May 2003 ARM intensive operational period at Southern Great Plains. J. Geophys. Res. 112, D15206, doi:10.1029/2006JD007173 .

  82. Zeng, X., W. Tao et al., S. Xie et al., 2007: Evaluation of long-term cloud resolving modeling with observational cloudy data. J. Atmos. Sci. 64, 4153-4177. doi: 10.1175/2007JAS2170.1

  83. Klein, S., X. Jiang, J. Boyle, S. Malyshev, S. Xie, 2006: Diagnosis of the summertime warm and dry bias over the U. S. Southern Great Plains in the GFDL climate model using a weather forecasting approach. Geophys. Res. Lett ., 33, L18805, doi:10.1029/2006GL027567

  84. Xu, K.-M., M. H. Zhang , …, S. Xie et al., 2005:. Modeling springtime shallow and deep frontal clouds with CRMs and SCMs. J. Geophys. Res., 110, D15S04, doi:10.1029/2004JD005153 .

  85. Boyle, J. S., et al., and S. Xie, 2005: Diagnosis of CAM2 in NWP configuration. J. Geophys. Res., 110 doi:10.1029/2004JD005042 .

  86. Williamson, D. L., et al., and S. Xie, 2005: Moisture and temperature budgets at the ARM SGP site in forecasts with CAM2. J. Geophys. Res., 110 doi:10.1029/2004JD005109 .

  87. Zhang, M. H., W. Y. Lin, et al, and S. Xie, 2005: Comparing clouds and their variations in 10 atmospheric general circulation models with satellite measurements. J. Geophys. Res., 110 doi:10.1029/2004JD005021 .

  88. Phillips, T. J., et al., and S. Xie , 2004: The CCPP-ARM Parameterization Testbed (CAPT): Where climate simulation meet with weather prediction. Bull. Amer. Meteor. Soc.,85 , 1903-1915. doi: 10.1175/BAMS-85-12-1903

  89. Xu, K.-M., R. T. Cederwall et al., and S. Xie, 2002: An Intercomparison of cloud-resolving models with the ARM summer 1997 IOP data. Q. J. R. Meteorol. Soc., 128, 593-624. doi: 10.1256/003590002320373229

  90. Waliser, D. E., J. Ridout, S. Xie, and M. Zhang, 2002: A Model Assessment of the Variational Objective Analysis: Implications for Atmospheric Field Programs. J. Atmos. Sci., 59, 3436-3456. doi: 10.1175/1520-0469(2002)059<3436:VOAFAF>2.0.CO;2

  91. Zhang M. H., J. L. Lin, R. Cederwall, J. Yio, and S.C. Xie, 2001: Objective Analysis of ARM IOP Data: Method, Features, and Sensitivity. Mon. Wea. Rev., 129, 295 – 311.doi: 10.1175/1520-0493(2001)129<0295:OAOAID>2.0.CO;2

  92. Ghan S., et al., and S. Xie, 2000: An Intercomparison of Single Column Model Simulations of Summertime Midlatitude Continental Convection. J. Geophys. Res., 105, 2091-2121. doi: 10.1029/1999JD900971

  93. Zhang, M. H., R. D. Cess, and S. C. Xie, 1996: Relationship between Cloud Radiative Forcing and Sea Surface Temperatures over the Entire Tropical Oceans. J. Climate, 9, 1374 -1384.doi: 10.1175/1520-0442(1996)009<1374:RBCRFA>2.0.CO;2

  94. Tu, W., S. C. Xie, and W. Chen, 1995: Experiments of the NMC (Beijing) T63 Four-Dimensional Data Assimilation Operational System. Quart. J. of Applied Meteorology, Vol. 6, 199-205.

  95. Shen, Y., X. Ding, and S. Xie, 1994: Analysis increment vertical interpolation scheme in T63 data assimilation and its experiments. Quart. J. of Applied Meteorology, Vol. 4.

Selected White Papers and Other Program Documents

  1. BERAC. 2022. U.S. Scientific Leadership Addressing Energy, Ecosystems, Climate, and Sustainable Prosperity: Report from the BERAC Subcommittee on International Benchmarking, DOE/SC-0208. M. McCann and P. Reed, eds. Biological and Environmental Research Advisory Committee. DOI:10.2172/1895129. (S. Xie was the lead author for the climate science chapter)
  2. Xie, S. D. Neelin, P. Bechtold, H. Ma, 2018: Improving the simulation of diurnal and sub-diurnal precipitation over different climate regimes. White paper to the Global Atmospheric System Studies (GASS) Panel.
  3. DOE Workshop Report on “ACME/ASR/ARM Coordination Workshop”, Oct. 21-22, 2015, Washington D. C., USA. DOE BER Documentation. (S. Xie was the workshop co-Chair and member of writing team)
  4. The Atmospheric Radiation Measurement Climate Research Facility Decadal Vision. DOE ARM documentation, 2014 (Contributing author)
  5. BER CESD. 2013: Report on the U.S./European Workshop on Climate Change Challenges and Observations. DOE/SC-0154. (Contributing author)